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Abstract

Compressible flow and heat transfer within gas-filled rapidly rotating cylindrical cavities is analyzed through a
formal analytical solution based on the integral transform method. The axisymmetric continuity, Navier—Stokes and
energy equations are handled for perturbations over the rigid body rotation solution typical of very high angular
velocities, aimed at finding the secondary flow pattern induced by the end caps prescribed boundary conditions. The
resulting linearized formulation in streamfunction-only form is solved through the generalized integral transform
technique (GITT), and converged numerical results are obtained for streamfunction and velocity components, which
are critically compared against previously reported purely discrete solutions. The physical flow behavior is also in-
terpreted in terms of the major governing parameters. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

During World War 11, the first experiments with gas
ultracentrifuges were undertaken, aimed at the military
use of enriched uranium resulting from this isotopic
separation process. However, the idea of employing
gravitational and/or centrifugal fields for attaining gas-
eous isotopic separation dates back to the end of the
19th century. After the war, and then more in connec-
tion with pacific nuclear energy applications, there was a
renewed interest in this analysis, and considerable pro-
gress in the modeling and simulation of such technology
was achieved [1].
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By the mid 1970s and early 1980s the scientific
literature was quite fertile in the analysis of gas flow
behavior within rapidly rotating cylinders. By the same
time, laser-induced isotopic separation appeared as an
alternative for the centrifugal separation technology,
slowing down somehow the scientific research on this
already industrially proved mechanical approach.
However, with the need of optimizing the performance
of existing plants, and also in connection with the urge
of developing countries in producing their own nuclear
fuel, computational simulation of ultracentrifuges be-
came a research topic of recent revival. Thus, this
compressible flow and heat transfer analysis is essential
in the evaluation of separation factors and separative
power of the centrifuge proposed or modified configu-
ration, to be optimized from the major operational
parameters [1].

The present work is aimed at studying the counter-
current compressible gas flow within ultracentrifuges for
isotopic separation. The mathematical model considers
the axisymmetric continuity, Navier—Stokes and energy
equations, together with the state equation for ideal
gases. The linearized form of these equations is usually
considered, as a result of perturbations to the rigid body
rotation solution, induced by the temperature and
velocity boundary conditions at the cylindrical cavity
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Nomenclature

Br Brinkman number (Eq. (6y))

Cp specific heat at constant pressure

cy specific heat at constant volume

Ek Ekman number (Eq. (6w))

G velocity parameter (Eq. (2d))

h aspect ratio

Iy, I modified Bessel function of the first kind
and zero and first order, respectively

Jo,Ji Bessel function of the first kind and zero
and first order, respectively

k thermal conductivity

Ky, K, modified Bessel function of the second
kind and zero and first order, respectively

M molecular weight of the gas

P absolute pressure of the gas

Pr Prandtl number (Eq. (6x))

R.Z radial and axial coordinates

7z dimensionless radial and axial coordinates

R universal gas constant

T gas absolute temperature

Wk, V7, Vy radial, axial and angular velocity
components, respectively

dimensionless radial, axial and angular
velocity components, respectively

Ur, Uz, U

Greek symbols

%, Py An elgenvalues

K radii ratio, k = R /R,

y ratio of specific heats, y = ¢, /cy
I absolute viscosity

v kinematic viscosity

0 angular coordinate

0 gas specific mass

W dimensionless streamfunction
X, I, ®, eigenfunctions

(2] dimensionless temperature

Q angular speed of the centrifuge

end caps [1]. The generalized integral transform tech-
nique, GITT [2-5], is the solution methodology selected
for this simulation task, in light of its hybrid numerical—
analytical nature, which shall allow for the establish-
ment of truly benchmark results for this challenging heat
and fluid flow problem, as well as for the more com-
putationally effective coupling with the separation cal-
culation and with the overall optimization of this device.

A Dbrief literature review was here undertaken to
better define the scope of the present contribution. Due
to its relation to a sensible technological field, the rele-
vant literature for this problem is in general classified or
at least not readily available in the archival periodicals.
In light of the complex nonlinear nature of the math-
ematical formulation, various approximate solution
paths were attempted along the years, roughly around
three types of methodologies: eigenfunction expansions,
boundary layers matching, and fully discrete schemes.
Some of the most pertinent contributions are listed in
references [6-15].

The GITT is an eigenfunction expansion approach,
derived from the classical integral transformation for
linear diffusion problems. Over the last two decades it
has been extended to handle various classes of linear and
nonlinear diffusion and convection—diffusion problems,
including Navier—Stokes and boundary layer-based
formulations. Some of these contributions, closely re-
lated to the scope of the present analysis, are listed in
references [16-21], in particular those connected to the
solution of the Navier—Stokes and energy equations in
the cylindrical coordinates system [18,19]. Its hybrid
nature allows for a straightforward analytical error

control procedure, which facilitates the establishment of
reference results in different classes of problems. Besides,
the semi-analytical structure offered for the potential
solutions is particularly suitable for the coupling with
optimization modules in the present physical situation,
when a purely discrete solution would require several re-
evaluations of the whole gas dynamic flow field.

2. Problem formulation

The physical problem consists of a pure gas flow
within an ultracentrifuge schematically represented in
Fig. 1 below. In the specific case of uranium enrichment,
this gas is UFg, with the coexistence of the two isotopes,
U-235 and U-238. Very high rotational speeds produce a
separation effect in the radial direction, with the gas
containing the heavier isotope being projected to the
outermost boundary. The main rotational flow is per-
turbed by mechanical and/or thermal drives at the top
and bottom caps, promoting a secondary flow which
allows for the internal circulation of the radioisotope, so
as to permit its mechanical separation through apertures
at the centrifuge end caps.

The gas centrifuge is formed by two coaxial cylinders,
with internal radius R, and external radius R,, and
height H, with constant angular velocity 2, enclosing a
viscous compressible gas flow. Considering the contin-
uum hypothesis still valid for this gas flow, the modeling
equations are those for conservation of mass, momen-
tum (Navier-Stokes), and energy, together with the ideal
gas equation of state, which in the cylindrical coordi-
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Fig. 1. Schematic representation of a gas ultracentrifuge [10].

nates system and for laminar steady regime are given by
[1,11]

0 0
52 (0RIR) + - (0V7) = 0. (1a)
GVR 102 V%
R ‘oz
. or ) Vg 10
Wy WV N\ [ Vo
p(VRaR R VZ@Z) {V Vb—ﬁ7 (Ic)
o, orz\ _ opP > 10
P(VR aR+VzaZ)*—&+M{V l/z"‘g&(v V)l
(1d)
or oT )
pCV(VRa_RJ’_ VZ&) (V V) V T+Avlsw (]C)
R

where R is the universal gas constant, M is the gas
molecular mass, p is the gas specific mass, P is absolute
pressure and 7T is the gas absolute temperature.

Egs. (1a)—(le) are subjected to the following bound-
ary conditions, once the mechanical drive mode of op-
eration is selected for analysis:

TR(R,Z) =0, (lg)
Vo(Ri,Z) = QR,, (1h)
V.(R,,Z) =0, (1i)
T(Ry,Z) =0 (1j)
Wa(Ry,Z) =0, (1k)
Vy(Ry, Z) = QR;, (11)
V.(Ry,Z) =0, (1m)
T(Ry,Z) =0, (In)
Ve (R, —LH) = 0, (1o)
Va(R, —\H) = R(2 + AQg), (1p)
V.(R,—3H) =0, (1q)
T(R,~H) =0, (Ir)
R(R,\H) = 0, (1s)
Vo(R,\H) = R(Q + AQy), (1t)
V.(R,3H) =0, (1u)
T(R,AH) =0, (1v)

where AQp and AQr represent the differential rotations
imposed at the end caps, bottom and top, respectively,
which are responsible for the main rotational flow per-
turbation here named as mechanical drive.

The operators above, (V- V), V? and A, are de-
fined as

12 vy
VoV = (RIR) + 5 (1w)
*? @ 12
2:7 —_— [ —
ViEZz Rk (1x)
IRNY  (RN\? (012
Awsc 2#{ < 6R ) + (f + &
o v, o\® [om\’
W K\ (e RN (%
oR R R oz R4

§<V-V>2}, (1y)

where the term 4,;. which appears in the energy equa-
tions refers to the viscous heat dissipation, while the
term P(V - V) represents the reversible work due to the
compressibility.

The gas flow in ultracentrifuges is rarely solved from
the above nonlinear formulation, since the secondary
flow generated by the end caps’ differential rotations is
essentially a small perturbation to the main rotational
flow due to the angular velocity Q. The most common
approach is to consider instead a linearized form of the
conservation equations, obtained from the above set of
equations after considering the composition of the rigid
body rotation solution and the first-order perturbation
solution. The rigid body rotation solution is readily
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obtained considering the whole structure rotating at the
same angular velocity; then, the only nonzero velocity
component is the tangential one, and all the flow
parameter variations in the axial direction are null. This
solution is written as

Vs(R) = QR, (2a)

P(R) =P, Exp{g{(%)z—l]}, (2b)
H(R) = py Exp{g {(%)2 l] } (20)

where the parameter G is a velocity parameter, similar to
the Mach number, defined as
_ MQR
WD

(2d)

The symbol () shall represent the rigid body rotation
solution. In Egs. (2b),(2¢c), the subscript (w) represents
the values at the outer cylinder wall, and 7 is the gas
temperature for the rigid body-type flow.

The perturbation solution is defined from small
variations over the rigid body rotation solution, as

Vo(R,Z) = QR + Vy(R, Z), (3a)
Ve (R, Z) = 0+ Vr(R, Z), (3b)
V2(R,Z) =0+ V4(R, Z), (3¢)
P(R,Z) = P(R) + P(R, Z), (3d)
p(R,Z) = p(R) + p(R,Z), (3¢)
T(R,Z) =Ty + T(R,Z), (3f)

where the symbol (™) represents the perturbation de-
pendent variables.

Substituting the above expressions into the original
conservation equations (la)-(1v), (Iw)—(ly), after ne-
glecting higher-order terms, the following linearized
equations are obtained:

10 . o .-
RaR(p k) + aZ(/JVz)fO, (4a)
—2pQVy — pRP?
oP o R 10
Ve
ZPQVR =u V Vb R2 (4C)
13 - oP

2 v _
u{v VZ+3aZ(v V)} A (4d)
— PRV = kVT (de)
P 5 T
7:T+*7 4f
P p Ty (49)

with the following boundary conditions:

R(R1,Z) =0, (4g)
Vo(R1,Z) =0, (4h)
V.(Ry,Z) =0, (4i)
T(R,2) =0, (4j)
Va(Ry, Z) = 0, (4k)
Vo(Ry,Z) = 0, (41)
V(R>, Z) = 0, (4m)
T(R,,Z) =0, (4n)
R(R,—H) =0 (40)
Vo(R, —iH) = RAQp, (4p)
V.(R,—H) = (49)
T(R,~IH) = (4r)
R(R,3H) =0 (4s)
Vo(R,1H) = RAQr, (41)
V.(R,3H) = 0, (4u)
T(R,AH) =0, (4v)

Egs. (4a)—(4v) for the perturbation solution are now
expressed in dimensionless form by considering the fol-
lowing groups:

r:R%’ (5a)
z_R%, (5b)
vy :QLIZ’ (5¢)
0=l (54)
= ot (5¢)
p:PﬁW, (5f)
pzﬁ, (52)
@:Tzo, (5h)
h:}%, (5i)

where £ is the centrifuge aspect ratio, and the dimen-
sionless linearized system is written as
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10 ov

& (rve) + > —Gruy, (6a)
1 0p Ek
721}9“1’7@—755*‘1’(?)
2, 10g.
x [v bS5+ 3 (V v)} , (6b)
Ek Uy

21)1- = (?) [VZU() — —2], (6C)
10p [(Ek ) 10

5&7(T) |:V vz+§a—Z(V V)], (6d)
— Brrv, = (E—k) v?e, (6e)

€

p=p+0O (6f)
with the dimensionless boundary conditions

UI(K7 Z) - 07 (6g)
U()(K,Z) = 0, (61’1)
v,(c,z) =0, (61)
O(x,z) =0, (6))
v(l,z) =0, (6k)
U()(lvz) = 07 (61)
v.(1,2) =0, (6m)
0(1,z) =0, (6n)
Ur(rv _%h) = 07 (60)
bg(}", 7%}1) - %}", (6p)
U; (}", _%h) = 0> (6q)
@(}", _%h) = 07 (61')
vi(r,3h) =0, (6s)
1)0(}", %h) = _lr7 (6t)
v.(r,3h) =0, (6u)
O(r,5h) =0 (6v)

The following characteristic dimensionless numbers,
Ekman, Prandtl and Brinkman numbers, respectively,
are also obtained from the above formulation:

. Hu
Ek = R (6w)
p=E2, (6x)
Br:GPr(%), (6y)

where y = ¢, /¢, and the quantity €(r) is given by

e(r) = exp {g (* - 1)}. (62)

3. The streamfunction-only representation

As in previous developments with the GITT for the
Navier-Stokes equations [16-21], the streamfunction-
only formulation is in general preferred, due to the en-
hanced convergence characteristics achievable under the
related eigenfunctions basis. The following expressions
are here employed to define the streamfunction in terms
of the velocity components:

be(r2) = _retr) awé’; i ’ (7a)
1 oy(rz) . (7b)

v:(r2) = re(r)  Or

With this definition, the continuity Eq. (6a) is auto-
matically satisfied, and Eqgs. (7a) and (7b) are now ap-
plied to the remaining linearized conservation equations,
resulting in the cancellation of the pressure terms in the
momentum component equations. This procedure was
performed through symbolic computation with the aid
of the Mathematica system [22]. The resulting partial
differential system is given by

2
EYYy = (2G3r3 7G2r+2—G>%+4Gr ov
r

or 0roz?
oy V)
_ 2 oy OV 2202
(56 +20G) o2 T40r5 5 —3G
azlp 62 61)0 ) 00
X¥+ﬁ<2r§f}’ a), (83)

azl}g 10 al)g Vg 2 61,0
=) ;a(’a)‘ﬁ—‘ﬁg’ (85)
’0 10 [ 06 Br oy
=) ;a—r(w)—ﬁ§ (8c)
with the boundary conditions
Y(x,z) =0, (84)
Wrz)|

i 0, (8e)
U(?(sz) = 07 (8f)
O(x,z) =0, (82)
¥(l,z) =0, (8h)
W(rz)| -

ar o - 07 (81)
U()(LZ) = 03 (SJ)
6(1,2) =0, (8k)
l//(}", _%h) = 07 (81)
O (r,z) _

aZ Z:,%h - 03 (Sm)
U(q(}", _%h) = %F, (81’1)
@(7‘, _%h) =Y, (80)
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W(r.3h) =0, (8p)
oy(rz)|
o |~ 0, (8a)
=
09(77 %h) = _%}’7 (81")
O(r,ih) =0, (8s)
where the operators £ and E* are given, respectively, by
* 1o @&
2 e — E—
E= o2 ror + oz2’ (89
E'Y = EX(E%). (8u)

4. Integral transformation methodology

Following the ideas in the GITT, we first select the
eigenvalue problems to be used as a basis for the ex-
pansions to be proposed. The radial direction was se-
lected for elimination through integral transformation,
and three eigenvalue problems are required, for each of
the dependent variables to be expanded: streamfunction,
tangential velocity, and temperature.

The streamfunction eigenvalue problem, extracted
from [23] and previously employed in [18,19], is given by

& 1d\ \
(@‘f‘; a) X,—(}") = OC[X,-(F) (9&)
fork <r<1and i=1,2,3,...

with boundary conditions

X; =0, inr=«, (9b)
dX; .

4 0, inr=rx, (9¢)
X, =0, inr=1, (9d)
%:o, inr—1, (%)

where X;(r) and o; represent the eigenfunctions and
eigenvalues, respectively, and these solutions are
obtained in normalized form as

10(0([}’)

Xi(r) = AvJo(ir) + Az Yo(our) + Az —— + Aui
10(05[')
Kolo
o Kolwr) i — 1205, (9f)
Ko (k)

The eigenvalues o,’s are obtained from substitution of
the above solution into the boundary conditions, to
yield the following algebraic system:

4
ZSjkAkj:O7 k:17"~747 (9g)
j=1

where the coefficient matrix S is given as

Jo(oK) Yo(oyx) 1;’0(‘(’;3) 1.0
Ko (o
S_ Jo(fxi) YO(%‘) 1.0 KOO((%,.,E) 9h
- —J X Y, ) I (2ix) _ 1 (%K) ( )
l(alK) I(OCIK) I (%) Ko (k)
I (o Ky (o
AN (IO o B o7

and finally requiring the existence of nontrivial solu-
tions

det |S] =0, (9i)

which yields the transcendental equation for the eigen-
values «;s, while the coefficients 4y;, A4,;, A3, and Ay; are
determined from Eq. (9g) starting with 4;; =1, for
convenience.

The eigenfunctions X;(r) obey the following orthog-
onality property:

[ xoxoer={L 7 g

where Ny, (o;) represent the norms of the eigenfunctions
X;(r) and may be analytically determined to yield

N, (24) = Vo) + Az Yo()]> = k2o (euk)
+ Ay Yo (045)]. (9k)

The eigenvalue problem selected for the tangential
velocity integral transformation is written as

L2 AO] 4 (-2 Y =0

r dr dr (10a)
with m =1,2,3,...

with boundary conditions

I,(x) =0, (10b)

r,(1)=0, (10c)

and its solution is readily given by

Ly(r) =21 (Bur)Yi(B,) = 1 (B) Vi (Br) (10d)

while the eigenvalues are evaluated from

Si(Bu) Vi (B,) = S () Vi (B,x) = 0. (10e)

The eigenfunctions I',, (r) follow the orthogonality
property

1
/ () (r)dr = {?\/r (B,) g Z i 57 (100

where the norms of eigenfunctions I',, (r) are writen as
_ 2 Ji(Bur) = Ji(Ba)
B Ba)

For the temperature field, we have taken the eigenvalue
problem below

Nr, (B) (10g)



L.M. Pereira et al. | International Journal of Heat and Mass Transfer 45 (2002) 99-112 105

Id {rd‘p"(r)} 4+ 20, =0

rdr dr (11a)
withn =1,2,3,...

with boundary conditions

?,(x) =0, (11b)

?,(1)=0 (11c)

again readily solved as

@, (r) = Jo(Zur) Yo(An) — Jo(2n) Yo(Aur) (11d)

and the transcendental equation for the eigenvalues
Jo(2ai) Yo (2n) — Jo(2) Yo(Auxc) = 0. (11e)

The eigenfunctions @, (r) obey the orthogonality prop-
erty

1
/ r(b,,(r)(Dk(r)dr:{gf(p @) ?g;zi: (11f)

with the norms given by the analytical expression
_ 2 Ty (k) = Jg ()

No, () =
w(h) = 2 T2 (J)

(11g)

Employing the above orthogonality properties, the fol-
lowing integral transform pairs are constructed:
Streamfunction:

U,(z) = / lri(,-(r)lp(r,z)dr (transform), (12a)
§o2) = Y ROV) - (imerse). (120)
Tangential velocity component:

Un(z) = / 1rfm(r)vg(r,z)dr (transform), (13a)
vo(r, z) :ifm(r)ﬁm(z) (inverse). (13b)
Temperature:

0,(z) = / Ir@n(r)@(nz)dr (transform), (14a)
o(r,z) :iéﬁn(r)@,,(z) (inverse), (14b)

and the following normalized eigenfunctions were de-
fined:

< _ Xi(r)

Xi(r) = Nl (15a)

- r,(r)

I, (r)=—~—, 15b
) Nr, (Bn) (150)

~ B o,(r)

@,(r) = 4]\/@” h (15¢)

Operating Eqgs. (8a)—(8¢c) with [ : rXi(r)dr, fK' v (r)dr

and f: r®,(r)dr, respectively, the following coupled or-
dinary differential system results:

Ek £~ dz Ek dz
dzﬁm 2 — 2 - dlpj(z)
@(2) = B, 0n(2) — K [/ZI:E,,,, &z | (16b)
4o, ) Br | . dyy(2)
2 (2) = 120,() + ZF . (16¢)

Similarly proceeding with the integral transformation of
the boundary conditions, Eqgs. (81)—(8s), one finds

Vi(—3h) =0, (16d)
Vi(—5h) =0, (16¢)
On(—3h) = 3/, (16f)
0,(=3h) =0, (16g)
¥, (5h) =0, (16h)
Vi(sh) =0, (16i)
On(3h) = =3/, (16j)
0,(3h) =0, (16k)

where the integral coefficients that appear in the infinite
ODE system for the transformed potentials are given by

1
Ay = / Xi(r) {(4+4Gr2)X'].”(r)
G 4+ 2Gr — )%
+ r 4+ r—3 ()

4\ -~
+ (2G3r4 -G +2G+ r—z)X;(r):| dr, (17a)

B = /Kl X,(r) {(2 + 4Gr2))~(}(r) - 2r~’/.’(r)

- §G2r3X,(r)} dr, (17b)
Cin = / 1 Pe(r)y X, (r) T (r)dr, (17¢)
Dy, = / l Pe(r)’X;(r)@,(r)dr, (17d)
E,y = / F ("X, (r)dr, (17¢)
Fy— / (X, (r)dr, (170)
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5. Computational procedure

The above ODE system, although coupled and infi-
nite, is still linear and homogeneous. Therefore, its an-
alytical solution may be obtained from the appropriate
matrix eigensystem analysis. For this purpose, system
(16a)—(16c) is rewritten as a first-order system in the
form

e = ), (18a)
(@) = 28 (180)
Tawn(e) = ), (15¢)
Tawr(z) = ), (184)

& dz#
+Z[

+ BU Y/+2NT( )j|
J=1

00
E in n+7NT
n=1

1 > _
+ K Z 2CimYisnr(z

m=1

(18e)
Yoranr(2) = n(2), (18f)
Tussir(z) = 2, (15)
s (z) _ &1a(2)
dz dz?
= B2 Vpsanr (2 — /i:E, /+NT:|1 (18h)
Yironr(2) = @ﬁ(z)’ (181)
Froawr(@) = 926 (18)
dYn+7NT(Z) _ d2@n(z)
dz dz?
— P ronle fj ERE } (18K)

while the boundary conditions are rewritten as

F(—4) = 0 (18)
Foonr (—3h) =0, (18m)
Ym+4NT( ;h) = %fm» (18n)
Yrovr(—3h) =0, (180)

Yi(3h) =0, (18p)
Yinr () =0, (18q)
Ypianr (Sh) = —f,n, (18r)
Yyvonr(4h) = 0. (18s)

The infinite series in each equation, for computational
purposes, were truncated to a sufficiently large finite
order NT, here taken as equal for each potential so as to
simplify the convergence analysis. For optimum com-
putational behavior, there should be no difficulty in
accounting for variable truncation orders among the
potentials. In the present choice, the first terms of order
1,...,4NT represent the transformed streamfunction
and its derivatives, the next 4NT + 1,...,6NT are rela-
tive to the tangential velocity and the last ones,
6NT + 1,...,8NT are associated with the temperature.

System (18a)-(18s) may be represented in matrix
form as

Y = MY, (19)

where M is the coefficient matrix of order 8 NT, inde-
pendent of the axial coordinate.
The solution vector Y may then be constructed as

Y = (e (20)

and substitution of Eq. (20) into system (19) yields the
matrix eigenvalue problem

(M — dI){ = 0, (21)

where I is the identity matrix, o are the eigenvalues of
matrix M and ( the associated eigenvectors. The final
solution for the transformed potentials and their deriv-
atives is then constructed as

SNT

Yi(2) chg‘e%- i=1,...,8NT, (22)

where the truncation order N7 may be varied to satisfy
user prescribed accuracy requirements.

The constants ¢;’s are obtained after substitution of
the solution (22) into the boundary conditions (181)—
(18s), making z; = 1A, to find:

For z = —z;:
i 0z i —dsnrz .

alie™ ™ + 4 esnrlgyre M =0, i=1,...,NT,
i -0 i —dsy

C]Cle L +CgNTC8NTe SNTEL — 0,

i=NT+1,...,2NT,

erle™ L+ eanp (e = %fm,
i—4NT+1,...,5NT,
{ m=1,...,NT
alie™ 4+ csnr (e =0,
i=6NT+1,...,7NT.
(23a)
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For z = z;:
1€ o+ gyl € =0, i=1,...,NT,
arlie 4+ canrloyre™ =0,
i=NT+1,...,2NT,
i 01z i ogrn L
1 0e” + ..+ canrlonr€ = _Efmv
i=4NT +1,...,5NT,
{ m=1,... ,NT
a1’ + . egnrliy €™ = 0,
i=6NT+1,...,7NT.
(23b)

For best computational performance, the constants are
redefined as

. cje(5/21
C/ - —djz
: cie

The IMSL mathematical library [24] is employed for the
accuracy controlled solution of these algebraic prob-
lems. Once the constants c;’s have been numerically
evaluated, the solution vector is finally reconstructed
from

if Real(s;) >0,

24
if Real(9;) < 0. 24

C;. C»’/le(s,'(z—zl )
VT if Real(é;) =0,
C;C;,e‘s/(-’+zl)

if Real(d;) <0,

i=1,...,8NT, (25)

=1

Table 1

The original potentials are then analytically obtained, at
any (r,z) position within the ultracentrifuge, from the
inversion formulae, Egs. (12b), (13b) and (14b), yielding
the desired final solutions for the streamfunction, tan-
gential velocity and temperature perturbation solutions
in dimensionless form.

6. Results and discussion

The numerical results here presented were obtained
for the same input data as considered in [11] for co-
validation purposes. Dickinson and Jones model the
centrifuge as a full cylinder, without taking into ac-
count the presence of the inner feeding tube. How-
ever, it was here verified that the same physical
behavior is attained within a certain range of con-
centric cylinder radii ratios in comparison to the full
cylinder simplification, due to the strong density
stratification produced by the very high rotational
speeds, concentrating most of the fluid mass within a
thin layer attached to the outer cylinder wall. The
values employed for the dimensionless parameters are
as follows:

y—1
h=30, G=235, H(VT) —0.06, Br=2.1,
5.40 % 1076
8(1)(5) 270 % 1076
K= 0'15, Ek=1< 673 x1077.
050 3.37 % 107
' 5.60 x 10°8

Convergence behavior of the streamfunction for Ek = 3.37 x 1077 and at z =0

NT r=0.80 (y x 10°) 0.85 ( x 10°) 0.90 (Y x 10%) 0.95 (y x 10%) 0.975 (¥ x 10%)
k =0.10

300 1.092 4.686 1.870 5.325 5.143

340 1.173 4.853 1.885 5.299 5.122

360 1.194 4.896 1.889 5.292 5.116

380 1.208 4.925 1.892 5.288 5.112

400 1.218 4.946 1.893 5.284 5.110

kK =0.15

280 1.204 4911 1.888 5.287 5.114

300 1.229 4.962 1.893 5.279 5.108

320 1.220 4.950 1.894 5.283 5.109

340 1.228 4.968 1.895 5.280 5.106

360 1.234 4.979 1.896 5.278 5.105

NT =080 ( x 107) 0.85 (W x 10%) 0.90 ( x 10%) 0.95 (W x 10%) 0.975 (i x 10°)
Kk = 0.50

100 9.207 4.291 1.815 5.349 5.188

180 9.871 4.441 1.834 5.332 5.168

240 9.886 4.444 1.834 5.331 5.167

280 9.888 4.444 1.834 5.331 5.167

300 9.889 4.444 1.834 5.331 5.167
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Our initial concern was to illustrate the excellent con-
vergence rates achieved by the present eigenfunction
expansion approach, as presented in Table 1, for the
streamfunction radial profile convergence behavior at
the axial position z=0, with different radii ratios
(k = 0.1, 0.15 and 0.50). It can be observed that con-
vergence improves as the radii ratio is increased; for the
lowest radii ratio of 0.1, full convergence to four sig-
nificant digits is yet not reached for truncation orders
NT = 400, while it is surely achieved for the other situ-

6.0E-5 4
G=35; h=30; Ex=3.37x107;2=0.0
g Antisymmetric mechanical drive
5.0E-5
4.0E-54
\?; ] Radii ratios
B i
= 3.0E-5 —©O—  =0.05 (NT=400)
§ g —a—  1=0.10 (NT=400)
ag 2.0E-5 ——  =0.15 (NT=300)
§ ] —A— =050 (NT=300)
7
1.0E-5
0.0E+0 4
-1.0E-5 - : - : - : . T T ,
0.5 0.6 0.7 0.8 0.9 1.0

Radial position (r)

Fig. 2. Comparison of radial profiles of the streamfunction for
z=0, Ek =3.37 x 1077 and different radii ratios.

2.0E-5—
G=35;h=30; E;=5.40x10°
k=0.1; z=0.0
Antisymmetric mechanical drive
1.5E-5—
T Truncation orders
2
N~ L
SRR —A— NT=20
g —— NT=260
§ 1 —P— NT=320
= —X— NT=360
E  50E6+
g —&— NI=S3R0
e i —c—  NT=400
0.0E+0 & &
-5.0E-6 - : - : - : T T T ,
0.5 0.6 0.9 1.0

0.7 0.8
Radial position ()

Fig. 3. Convergence behavior of radial profile of the stream-
function for z = 0, Ek = 5.40 x 10~® and x = 0.10.

ations. For x = 0.50, with less than 300 terms, full
convergence to four significant digits is observed
throughout the range of radial positions inspected. This
convergence behavior is quite similar to that observed in
the more straightforward forced convection application
considered in [19].

In Fig. 2 we plot the streamfunction radial profiles
at z=0, for the four different geometric configura-
tions (x =0.05, 0.10, 0.15 and 0.50) and for
Ek =3.37x 1077, It is then evident, both from the

6.0E-5 4
G=35;h=30; E,=2.70x10"
1 «=0.1; z=0.0
5.0E-5 Antisymmetric mechanical drive
4.0E-5 -
Truncation orders
S J
‘;f —A—  NT=200
g 30527 —— NT=240
g 1 —— N1
“E 2.0B-5 —>(—  NT=360
2 1 —&— NT=3%0
7]
1.0E-5 —f—  NT=400
0.0E+0 ™
-1.0E-5 ; ; . : i ‘ ' : ' ‘
0.5 0.6 09 1.0

0.7 0.8
Radial position (r)

Fig. 4. Convergence behavior of radial profile of the stream-
function for z =0, Ek =2.70 x 107 and x = 0.10.

1.0E4 o
G=35;h=30; E;=6.73x10"7
1 k=0.1;z=0.0
Antisymmetric mechanical drive
8.0E-5
Truncation orders
= 6.0E-5 -
= —A— NT=I180
9.‘ -
= —— NT=240
§ 4.0E-5 —P— NI=320
E | —><—  NT=360
§ —S—  NT=380
G 20E54 N
0.0E+0 1
2.0E5 T T T T T T T T T |
0.5 0.6 . 0.9 1.0

0.7 0.8
Radial position (r)

Fig. 5. Convergence behavior of radial profile of the stream-
function for z =0, Ek = 6.73 x 1077 and x = 0.10.
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1.0E4 -
G=35;h=30; Ex=3.37x10"7
| x=0.1; z=0.0
Antisymmetric mechanical drive
8.0E-5
o 60ES- Truncation orders
g —A— NT=160
= —F— NI=240
S
3 40E-5 4 —D— NT=320
“E i —3(—  NT=360
2 2.0E-5 —O— NI
“woT —c—  NT=400
0.0E+0
20E5 . . . . . . . : . .
0.5 0.6 0.8 0.9 1.0

0.7
Radial position (r)

Fig. 6. Convergence behavior of radial profile of the stream-
function for z =0, Ek = 3.37 x 1077 and x = 0.10.

7.0E-5 G=35; h=30; «=0.1; z=0.0
4 Antisymmetric mechanical drive
6.0E-5] o"”
] GITT Dickinson and

5.0E5 E; . Jones [11]

= ] 5.40x10° ———(NT=400) A
. -6

S’? 4.0E-5- 2.70x10 ——— (NT=400) n
= i
.2
5 3.0E-5
£
E i
E 2085
£ i
za

1.0E-5

0.0E+0
-10E-5 —
0.5 0.6 0.7 0.8 0.9 1.0

(a) Radial position (7)

4.0E-5 4
G=35; h=30; Ex=5.60x10%
x=0.1; z=0.0
T Antisymmetric mechanical drive
3.0E-5
Truncation orders
= | —A— NT=160
E% 2,085 —— NT=200
g —P— NI=240
‘é ] —>¢— NT=260
= —&— NT=280
£ LOESH
8 —e— NI=300
7
0.0E+0
-1.0E-S . . . . . . - T - .
0.5 0.6 09 1.0

0.7 0.8
Radial position (r)

Fig. 7. Convergence behavior of radial profile of the stream-
function for z = 0, Ek = 5.60 x 10~® and x = 0.10.

8.0E-5 G=35; h=30; ¥=0.1; z=0.0
1 Antisymmetric mechanical drive
7.0E-5
R Dickinson and
6.0E-5 E, GITT Jones [11]
— 6.73x10”7 ~T00)
= 2T 337107 (NT=400) A
> 1 -8
S 40B5+ 5.60x10 (NT=300) 9
2 |
=}
2 30E5+
% J
& 20E-5-
w1
1.0E-5
0.0E+0
-1.0E-5 —
0.5 0.6 0.7 0.8 09 1.0
(b) Radial position (r)

Fig. 8. Comparisons of radial profile of the streamfunction for the present GITT converged solution and finite differences solution in
[11] for: (a) Ek = 5.40 x 107¢ and 2.7 x 107%; (b) £k = 6.73 x 1077, 3.37 x 1077 and 5.60 x 1078,

values in Table 1 and from this figure, that at least in
this radii ratios range (0.05<x<0.5), there is no
significant difference in the gas flow behavior within
the centrifuge, as mentioned above, and thus the exact
actual boundary location for the inner cylinder does
not play a major role in the final flow field simulation.
It means that in this range the flow is very little
perturbed by the inner boundary condition. Despite
the fact that the convergence is faster for higher values
of the radii ratio, the remaining of the present simu-
lation was performed with the more actual configu-
ration ratio of 0.1.

In Figs. 3-7 we illustrate the convergence behavior of
the streamfunction radial profiles at z =0 and x = 0.1,
for all the Ekman number values considered. It can be
observed that for Ekman number of order 10~¢, shown
in Figs. 3 and 4, around 360 terms were required for a
full graphical coincidence among the solutions with
different truncation orders, while for values of the order
of 1077, the curves merging is already noticeable for
about 320 terms in the expansions (Figs. 5 and 6). In the
lowest value of Ekman number adopted, Ek = 5.60 x
1078, 240 terms were enough to demonstrate full con-
vergence to the graph scale, as in Fig. 7.
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20E3

G=35;h=30; Ex=3.37x107
«=0.1; z=0.0
Antisymmetric mechanical drive
1.0E3
> 0.0E+0
R3]
L~
o5 Truncation orders
@2 -LOE3
gg —K— NT=160
w
E | —A—  NT=240
=
< 20E3 = NT=300
R —¥— NT=360
3.0E-3 —s&— NT=380
] —O— NT=40
4.0E3 : T : T T T T T T )

0.5

14
>N

0.7 0.8 09 1.0
Radial position (7)

Fig. 9. Convergence behavior of the axial mass velocity for
z=0, Ek =3.37 x 10”7 and k = 0.10.

LOE-3 o

0.0E+0
2
g J
Sa G=35;h=30; E,=3.37x107
[0 1=0.1; z=0.0
éi -1.0E3 Antisymmetric mechanical drive
~
.T,E U
Z 1 GITT (NT=400)
[ ) Dickinson and Jones [11]
2.0E3
3.0E3 . I " I " I " I " |
075 0.80 085 0.90 095 1.00

Radial position ()

Fig. 10. Comparison of radial profile of the axial mass velocity
for the present GITT converged solution and finite differences
solution in [11] for z=0, Ek = 3.37 x 107 and x = 0.10.

Next, we were concerned with the co-validation of
the present fully converged results against the numerical
solution in [11], which is again shown in terms of the
streamfunction radial profiles, within Fig. 8(a) and (b).
A good agreement is observed for all the cases consid-
ered, especially close to the inner wall and at the return
layer adjacent to the outer wall (Stewartson layer). Some
deviations are observable at the peak regions, where
flow reversal occurs, probably due to the fairly rough
mesh employed in the finite differences computation of
[11] around this region.

Fig. 9 presents the convergence behavior of the axial
mass velocity radial profile at z =0 with Ek = 3.37 x
1077 and x = 0.10. It can be said that the curves are
already fully coincident for values of NT = 300. The
flow changes direction at around » = 0.95, which cor-
responds to the maximum value of the streamfunction in
Fig. 6, for the present value of Ekman number. Again,
the comparison with the numerical results in [11] dem-
onstrates the reasonably good agreement, as reproduced
in Fig. 10.

Fig. 11(a)—(e) illustrate the physical nature of this
compressible flow, for the various Ekman number val-
ues considered, by plotting the streamfunction isolines
within the centrifuge. It is first of all interesting to notice
the symmetry of the flow with respect to the plane z = 0,
an expected behavior due to the anti-symmetric me-
chanical drive at the end caps, adopted for the present
analysis. Also, quite noticeable is the formation of the
Ekman layers adjacent to the end caps, besides the
presence of the Stewartson layer adjacent to the outer
cylinder wall. The Ekman layers are more clearly ob-
served for the higher values of the Ekman number, Fig.
11(a)—(c), while the Stewartson layer is more evident in
Fig. 11(d) and (e), at the lower values of Ekman num-
ber, due to the increased importance of the centrifugal
forces.

7. Conclusions

The GITT was successfully employed in the simula-
tion of compressible flow within rapidly rotating con-
centric cylinders, as required for the accurate
representation of gas flow fields within ultracentrifuges
for isotopic separation. A formal analytical solution was
developed and accurate results were obtained for vari-
ous physical situations, and employed in the co-valida-
tion with previously reported purely numerical solutions
for the case of an anti-symmetric mechanical drive, with
very good overall agreement. The analytical nature of
the proposed solution is particularly attractive in terms
of computational performance when applied to the op-
timization of the centrifugation and separation param-
eters, in connection with the radioisotopes concentration
field determination. All the results here reported were
obtained within mild computational effort on personal
microcomputers.
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